Parametric inference and forecasting for continuously invertible volatility models
نویسندگان
چکیده
We introduce the notion of continuous invertibility on a compact set for volatility models driven by a Stochastic Recurrence Equation (SRE). We prove in this context the strong consistency and the asymptotic normality of the M-estimator associated with the Quasi-Likelihood criteria. We recover known results on univariate and multivariate GARCH type models where the estimator coincides with the classical QMLE. In EGARCH type models. our approach gives a strongly consistence and asymptotically normal estimator when the limiting covariance matrix exists. We provide a necessary and sufficient condition for the existence of this limiting covariance matrix in the EGARCH(1,1) model introduced in Nelson (1991). We exhibit for the first time sufficient conditions for the asymptotic normality of the estimation procedure used in practice since Nelson (1991). AMS 2000 subject classifications: Primary 62F12; secondary 60H25, 62F10, 62M20, 62M10, 91B84.
منابع مشابه
Comparing the performance of GARCH (p,q) models with different methods of estimation for forecasting crude oil market volatility
The use of GARCH models to characterize crude oil price volatility is widely observed in the empirical literature. In this paper the efficiency of six univariate GARCH models and two methods of estimation the parameters for forecasting oil price volatility are examined and the best method for forecasting crude oil price volatility of Brent market is determined. All the examined models in this p...
متن کاملForecasting Crude Oil prices Volatility and Value at Risk: Single and Switching Regime GARCH Models
Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...
متن کاملPresenting a model for Multiple-step-ahead-Forecasting of volatility and Conditional Value at Risk in fossil energy markets
Fossil energy markets have always been known as strategic and important markets. They have a significant impact on the macro economy and financial markets of the world. The nature of these markets are accompanied by sudden shocks and volatility in the prices. Therefore, they must be controlled and forecasted by using appropriate tools. This paper adopts the Generalized Auto Regressive Condition...
متن کاملThe Stock Returns Volatility based on the GARCH (1,1) Model: The Superiority of the Truncated Standard Normal Distribution in Forecasting Volatility
I n this paper, we specify that the GARCH(1,1) model has strong forecasting volatility and its usage under the truncated standard normal distribution (TSND) is more suitable than when it is under the normal and student-t distributions. On the contrary, no comparison was tried between the forecasting performance of volatility of the daily return series using the multi-step ahead forec...
متن کاملA Fuzzy Random Walk Technique to Forecasting Volatility of Iran Stock Exchange Index
Study of volatility has been considered by the academics and decision makers dur-ing two last decades. First since the volatility has been a risk criterion it has been used by many decision makers and activists in capital market. Over the years it has been of more importance because of the effect of volatility on economy and capital markets stability for stocks, bonds, and foreign exchange mark...
متن کامل